报告题目: |
From Atomic Structure to Properties of Oxides----Applications of Aberration-corrected TEM |
报告人: |
贾春林教授 |
报告人单位: |
Jia-lab for Interface and Atomic Structure, Xi’an Jiaotong University and Forschungszentrum Jülich GmbH, 52425 Jülich, Germany |
报告时间: |
11月18日(周五)下午3点 |
报告地点: |
金沙8888js官方科技楼北410 |
报告人简介: |
|
|
贾春林教授是国际知名的电镜专家,1993年获德国亚琛工业大学工学博士学位,是德国于利希研究中心资深研究员、金属氧化物电子陶瓷微结构研究团队学术带头人,西安交通大学国际电介质研究中心首席科学家。其研究方向包括金属氧化物铁电薄膜的亚纳米结构缺陷与性能,晶体缺陷结构的原子尺度表征,以及像差校正、定量高分辨透射电子显微学。在Science、Nature Materials、Physical Review Letters等国际学术期刊发表研究论文110余篇,论文被引用超过1700篇次,H指数28,2010年受聘于西安交通大学。 |
报告摘要: |
|
|
Oxide materials have become increasingly important for electronics applications. In particular, thin films of oxides have been considered as the most promising material basis for various electronic devices such as non-volatile ferroelectric random access memory (FRAM), high-density dynamic random access memory (DRAM), and resistive random access memory (RRAM). Lattice defects including interfaces, dislocation and local chemical variation have attracted great attentions of research. The electrical properties of these defect areas in most cases show a deviation from the matrix bulk. These unexpected properties can be considered for application in devices for novel functions. Hetero-interfaces and dislocations in oxide systems and domain walls in ferroic materials are particularly interesting since these lattice defects can be engineered by thin film technology and their properties and corresponding structure feature can be tested and investigated by various techniques. Transmission electron microscopy (TEM) has proven to be a powerful tool for structural characterization of materials. In particular, in the recent decade great progress in the technique of high-resolution transmission electron microscopy (HRTEM) has been made by the successful introduction of the spherical aberration (CS) correctors. Based on the CS-corrected microscope point resolution of sub-Angstrom has been achieved. For crystalline materials aberration-corrected microscopy can be used for determining the position of atomic columns with a precision of a few picometres and for determining the chemical occupancy of atomic columns with the precision of a few atomic percept. With quantitative evaluation of image contrast of thin crystal the number of atoms within the atomic columns parallel to the viewing direction has been determined and it is also possible to determine three dimension shape of nano-scale crystal with single-atom precision. In the present lecture, we focus our discussion on (1) quantitative HRTEM based on negative CS imaging (NCSI) technique and (2) its applications to studying oxide materials. |